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Three-dimensional and time-dependent simulations of viscoelastic Taylor–Couette
flow of dilute polymer solutions are performed using a fully implicit parallel
spectral time-splitting algorithm to discover flow patterns with various spatio-
temporal symmetries, namely rotating standing waves (RSWs), disordered oscillations
(DOs) and solitary vortex structures referred to as oscillatory strips (OSs) and
diwhirls (DWs). A detailed account of the impact of flow transitions on molecular
conformation and viscoelastic stress, velocity profiles, hydrodynamic drag force and
energy spectra of time-dependent flow states is presented. Overall, predicted pattern
selection and flow features compare very favourably with experimental observations.
For elasticity number E, that signifies the ratio of elastic to viscous forces, >0.1, and
when the shear rate (cylinder rotation speed) is increased above the linear stability
threshold, the circular Couette flow (CCF) becomes unstable to RSWs which are
characterized by a checkerboard-like pattern in the space–time plot of radial velocity,
implying symmetry between inflow/outflow (I/O) regions. As the shear rate is further
increased, perturbations that break the I/O symmetry are amplified leading to DOs
and/or flame-like patterns with spectral mechanical energy transfer reminiscent of
elastically induced low-Reynolds-number turbulence. However, when the shear rate
is decreased from those at which such chaotic states are observed, the radially inward
acting polymer body force created by flow-induced molecular stretching causes the
development of narrow inflow regions surrounded by much broader weak outflow
domains. This promotes the formation of solitary vortex structures, which can be
stationary and axisymmetric (DWs) or time-dependent (OSs). The dynamics of the
formation of these structures by merging and coalescence of vortex pairs and the
implication of such events on instantaneous hydrodynamic force are studied. For
O(1) values of E, OSs and DWs appear approximately at constant values of the We,
defined as the ratio of polymer relaxation time to the inverse shear rate in the gap.
As shear rate is decreased further, DWs decay to CCF although at We values less
than the linear stability threshold. The flow transitions are hysteretic with respect to
We, as evidenced by a plot of drag force versus We.
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1. Introduction
Taylor–Couette flow (TCF) refers to fluid flow in the gap between two coaxial and

independently rotating cylinders with length much greater than the gap width. It has
long served as a classical paradigm for investigation of hydrodynamic instabilities and
nonlinear pattern formation (Chandrasekhar 1961; Drazin & Reid 1981; Chossat &
Iooss 1994). For Newtonian fluids, in the case when the inner cylinder is rotated and
the outer one is held stationary, Taylor (1923) observed that centrifugal effects can
cause the basic unidirectional azimuthal Couette flow to become unstable to toroidal
stationary vortices when the rotation speed exceeds a critical value. Since then, a
variety of flow transitions have been experimentally observed for a relatively broad
range of inner to outer cylinder rotation ratios (Andereck, Liu & Swinney 1986). For
instance, when the inner cylinder rotation rate is increased while the outer cylinder
is stationary, the flow changes from unidirectional Couette to the aforementioned
Taylor-vortex flow (TVF) and subsequently to wavy-vortex flow (WVF), modulated
waves (MW) and eventually to turbulent Taylor vortices (Andereck et al. 1986). Small
additions of high molecular weight polymers into a highly viscous Newtonian solvent
can qualitatively alter this sequence of flow transitions as well as the critical points
and stability characteristics. This is expected because unlike Newtonian fluids where
the stress depends on the local instantaneous rate of deformation, stress in polymeric
liquids depends on liquid deformation history (Bird et al. 1987). Polymer molecules
stretch/relax and orient in the flow. Hence, the polymer solution itself exhibits a
characteristic stress relaxation time and develops normal stresses along the circular
streamlines even in the basic circular Couette flow (CCF). The ratio of fluid relaxation
time λ to the inverse of characteristic shear rate γ̇ is characterized by the Weissenberg
number We. An elasticity number, E ≡ We/Re, where Re denotes the Reynolds (ratio
of inertial to viscous forces) number, has been used to characterize the importance of
elastic effects in inertial flows of dilute polymer solutions. Note that E is independent
of the shear rate and characterizes the ratio of the time scale of fluid relaxation to
that of viscous diffusion within the gap.

The purely elastic (inertialess, E � 1) TCF instability was experimentally and
theoretically reported by Larson, Muller & Shaqfeh (1989, 1990) in a non-shear
thinning (in terms of polymer viscosity and first normal stress difference) dilute
polymer solution referred to as Boger fluid. The mechanism was derived based on a
linear stability analysis for axisymmetric and oscillatory perturbations for an Oldroyd-
B model that qualitatively described the shear rheology of Boger fluids. Specifically,
it was proposed that the basic Couette flow stretches the polymer molecules along
the circular streamlines with the ensemble-averaged chain extension that increases as
We2. The normal/hoop stress thus created can be convected by radial velocity (ur )
fluctuations. This results in an inward elastic radial force which amplifies the radial
and axial velocities when a dimensionless parameter K ≡ We2 (1 − β) (d/R1) exceeds
an O(1) value. Here d ≡ R2 − R1 is the gap width, R1 denotes the inner cylinder
radius, β refers to the solvent to total solution viscosity ratio and K represents
the volume force ratio of elastic first normal stress to viscous friction. The above
functional relationship for K was experimentally verified by Groisman & Steinberg
(1996, 1998b). Note that the above purely elastic mechanism is applicable only for
isothermal flows. Under non-isothermal conditions, it has been established that dilute
solutions of high molecular weight polymers with thermal sensitive viscosity (e.g.
Boger solutions) are susceptible to thermoelastic instabilities in presence of viscous
heating (Al-Mubaiyedh, Sureshkumar & Khomami 1999, 2000, 2002; White & Muller
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2000, 2003). In this case, secondary flow is axisymmetric and stationary and resembles
TVF, and critical Weissenberg number values could be an order of magnitude lower
compared to those in the isothermal case. In this work, isothermal flows are considered,
which are applicable for cases when the polymer relaxation time is greater than the
thermal diffusion time scale.

Steinberg & Groisman (1998) performed flow visualization experiments in which the
solution elasticity was systematically varied up to three orders of magnitude in order
to span the inertial (E → 0) to purely elastic (E � 1) flow regimes and investigated the
effect of E on flow instability and pattern formation. The experimental fluid used in
their studies was a dilute polymer solution made by dissolving high molecular weight
polyacrylamide (PAAm) in viscous sugar syrup (63% saccharose in water), which
exhibited shear-thinning behavior. Their experiments revealed novel flow patterns
that emerge in the post-critical regime such as rotating standing waves (RSWs) or
ribbons, disordered oscillations (DOs), oscillatory strips (OSs) and diwhirls (DWs).
These patterns have been shown to occur over a wide range of conditions ranging
from inertia-dominated (E < 1) to elasticity-dominated (E � 1) flows.

RSWs appear as ribbons which can be viewed as superposition of two counter-
propagating upward and downward spiral waves of the same amplitude. The DOs
displayed distinguishing features such as a characteristic frequency, which is inversely
proportional to the polymer relaxation time, broader peaks in the frequency spectra
compared to ribbons and chaotic changes in radial and axial velocities in space
and time. The chaotic features of DOs have been associated with the phenomenon
of elastically induced turbulence (Giesekus 1968), which was observed in a swirling
flow between two plates (Groisman & Steinberg 2000, 2004). The DWs appeared
as randomly spaced axisymmetric and stationary dark rings (Groisman & Steinberg
1996, 1997, 1998a, b; Steinberg & Groisman 1998). These experiments were performed
for a gap ratio (R1/R2) of 0.708 (cylinder height ≈ 54d) with β of 0.926, and for
a gap ratio of 0.829 (cylinder height ≈ 74.7d) with a lower β value of 0.55. RSWs
were also observed in experiments using dilute polyethylene oxide solutions where
β < 0.16 and R1/R2 = 0.883 (Crumeyrolle, Mutabazi & Grisel 2002).

Analysing the radial velocity statistics of DWs, OSs and DOs obtained from laser
Doppler velocimetry (LDV) measurements, Groisman & Steinberg (1996) suggested
that these novel flow patterns which emerge as a result of nonlinear transitions
should consist of flow structures of the DW type which exhibit major asymmetry
between radial inflow (ur < 0) and outflow (ur > 0) regions when viewed in the r–z

planar cross-section, i.e. the counter-rotating vortices that generate the inflow and
outflow regions along the cylinder column are no longer of equal sizes unlike in the
case of the toroidal vortex cells of TVF. Specifically, axisymmetric and stationary
DWs emerged at We values slightly below the linear stability predictions (Larson
et al. 1990; Avgousti & Beris 1993a). The RSWs, DOs, OSs and DWs are elastic
in origin as evidenced by their occurrence at Re values for which the corresponding
Newtonian CCF flow is stable. While the DOs are reminiscent of the phenomenon of
‘elastic turbulence’, the DWs could exist even below the linear stability threshold for
We. Independent experiments by Baumert & Muller (1999), with highly elastic and
practically non-shear-thinning solutions (polyisobutylene/polybutene) in a Couette
cell of gap size R1/R2 = 0.827 and axial height of ≈30d, showed non-axisymmetric
flame patterns made up of merging or coalescing DW-like coherent structures (CS)
to exist at low and high elasticities. The coalescence feature was also reported to
occur in the case of axisymmetric DW patterns in the experiments of Groisman &
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Steinberg (1997), where it was observed that when any two DWs are spaced apart
within an axial range of 5d, they tend to coalesce to form a single DW.

As evident from the above discussion, three-dimensional and time-dependent
simulations are necessary to theoretically determine the pattern selection in the post-
critical regime. Such simulations can contribute to our understanding of the nonlinear
flow-microstructure (velocity field-stress) coupling and reveal how inflow/outflow
(I/O) asymmetries inherent in these nonlinear and complex flow patterns are created.
Weakly nonlinear analyses have been performed to evaluate the bifurcation diagrams
for transition from CCF to RSW or spiral patterns (Sureshkumar, Beris & Avgousti
1994; Renardy et al. 1996). However, such analyses are insufficient to probe the
development and reinforcement of I/O asymmetries, since an RSW in itself maintains
perfect space–time I/O symmetry as revealed by its checkerboard-like signature in a
space–time plot (Groisman & Steinberg 1996). As shown by Thomas, Sureshkumar
& Khomami (2006b), three-dimensional transient simulations that allow for the
computation of the growth of perturbations that break the I/O symmetry of an
ideal RSW are required to understand flow transitions leading to localized solitary
vortices that exhibit narrow regions of strong inflow surrounded by broad regions
of weak outflow. Such simulations also offer stringent tests for the predictive
capabilities of polymer constitutive models. However, three-dimensional viscoelastic
flow computations are computationally challenging because of the large memory and
CPU time requirements as well as the mathematical/algorithmic challenges involved
in approximating the solutions for the general elliptic–hyperbolic system of governing
equations in viscoelastic flows (Owens & Philips 2002).

Kumar & Graham (2000, 2001) took a significant step towards understanding
viscoelastic CS and confirmed the existence of axisymmetric and localized CS of
the DW type. These authors traced out the stationary branches in the purely elastic
(E → ∞) Couette–Dean flow by employing a two-dimensional steady-state spectral
algorithm and provided a self-sustaining mechanism that supports the DW structure.
They specifically considered an inertialess (E → ∞) flow driven by a combination of
drag (by the inner cylinder rotation) and an externally applied azimuthal pressure
gradient. In the purely pressure-driven flow (Dean flow), it is known that stationary
solution branches exist. Using these solutions as starting points and based on the
FENE-P (finitely extensible nonlinear elastic – Peterlin) viscoelastic constitutive
equation with relatively low values of maximum ensemble-averaged polymer chain
extensibility, L2 = 1830, they traced the evolution of these stationary branches to
the Taylor–Couette limit by progressively reducing the magnitude of the pressure
gradient term to zero. They showed that these non-trivial stationary solutions exist
as spatially localized CS similar to the experimentally observed DW patterns.

To our knowledge, the present study represents the first successful attempt to
perform systematic dynamical simulations of nonlinear pattern formation in a
prototypical curvilinear viscoelastic flow. We note that in the experiments of Steinberg
& Groisman (1998) and Groisman & Steinberg (1998a), neither OSs nor DWs were
observed as the inner cylinder rotation (shear) rate was increased above the stability
threshold value, but rather the flow became chaotic and disordered at a critical shear
rate value. The OSs and DWs appeared only during when the shear rate was reduced
from that at which DOs exist to the stability threshold, indicating that transition to
OSs and DWs is sensitive to the flow history. This further underscores the importance
of performing three-dimensional and time-dependent simulations that mimic the
experimental protocol without any restrictions on the spatial (non-axisymmetric or
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axisymmetric) or temporal (time-dependent or stationary) symmetries of the solution,
but instead grant simulations the freedom to select the flow patterns.

Theoretically, it had already been known based on linear stability analysis
(Avgousti & Beris 1993a), that flow transition from CCF to non-axisymmetric and
time-dependent secondary states could occur for E � 0.01. Based on the spatio-
temporal symmetries of the base flow, Avgousti & Beris (1993b) also identified the
secondary flow patterns at the stability threshold to be axially travelling spirals and
azimuthally rotating ribbons. Recently, Thomas et al. (2006a) successfully performed
the first three-dimensional time-dependent computation of non-axisymmetric and
time-dependent viscoelastic flow patterns using an efficient fully spectral three-
dimensional parallel algorithm. Specifically, it was shown based on the Oldroyd-B
model that ribbon (or RSW) and spiral patterns manifest for We values slightly
greater than the linear stability threshold, and the results are consistent with earlier
local nonlinear analysis (Sureshkumar et al. 1994). However, the parametric (We–E)
region above the linear stability boundary where nonlinear transitions such as DOs,
OSs and flame patterns have been experimentally shown to exist remain largely
unexplored except for our recent report (Thomas et al. 2006b). Towards this end,
we perform three-dimensional dynamical TCF simulations in the post-critical regime
using the FENE-P viscoelastic model that mimics the rheological properties of dilute
polymer solutions. In this work, in order to enhance numerical stability, we have
implemented a fully implicit (FI) spectral scheme (see Appendix) as opposed to the
previously developed semi-implicit version of the operator splitting influence matrix
spectral (OSIMS) algorithm (Thomas et al. 2006a). The FI scheme is based on the
algorithm that was first developed and applied for direct numerical simulation (DNS)
of turbulent viscoelastic channel flow by Housiadas & Beris (2004). As will be shown
later, the flow patterns obtained from the present simulations have been identified
as ribbons, modulated ribbons, axisymmetric OSs, non-axisymmetric OSs or flame
patterns, DOs and stationary and axisymmetric DWs. Overall, very good comparisons
between experimental observations and simulations results are obtained for pattern
selection and flow features.

The remaining part of the paper is organized as follows. The viscoelastic flow
problem is formulated in § 2, followed by the results and discussion in § 3. We present
the conclusions in § 4. A description of the simulation algorithm is provided as an
appendix.

2. Problem formulation
We consider the Taylor–Couette system with inner (rotating) and outer (stationary)

cylinders of radii R1 and R2, respectively. Let the angular velocity of the inner cylinder
be denoted by Ω1. Let ηT , ρ and λ denote the total solution viscosity, fluid density
and average relaxation time of the polymer solution, respectively. The total solution
viscosity ηT is the sum of the solvent (ηS) and polymeric (ηP ) contributions, i.e.
ηT = ηS + ηP . We choose gap width d ≡ R2 − R1, d/(R1Ω1), R1Ω1, ρ (R1Ω1)

2 and
ηP R1Ω1/d as the scales for length, time, velocity, pressure and polymeric stress,
respectively. Also, let us define r1 = R1/d and r2 = R2/d. Then the dimensionless
momentum equation for an incompressible (∇ · u = 0) viscoelastic fluid can be written
as

∂u
∂t

= u × ω − ∇P +
β

Re
∇2u +

(1 − β)

Re
∇ · τ , (2.1)
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where u denotes the velocity vector with components ur , uθ and uz in the r, θ and
z directions respectively of a cylindrical coordinate system (r1 � r � r2, 0 � θ �
2π, 0 � z � Lz), with the z-axis coinciding with that of the cylinders. Lz ≡ 2π/α

represents the dimensionless length of the computational domain along the cylinder
axis and α denotes the dimensionless axial wavenumber. β is the solvent to total
viscosity ratio, ω ≡ ∇ × u, the Reynolds number Re ≡ ρR1Ω1 d/ηT , P denotes the
total hydrodynamic pressure and τ denotes the polymeric stress.

The FENE-P constitutive model for dilute polymer solutions (shear thinning
in viscosity and first normal stress coefficient) described in this work is based
on the dumbbell description of a polymer chain with two beads that experience
hydrodynamic drag force and stochastic Brownian forces due to solvent connected
by a finitely extensible entropic spring subject to a nonlinear spring-force law. The
FENE-P model has been successful in predicting complex flow phenomena such as
polymer-induced turbulent drag reduction (Sureshkumar, Beris & Handler 1997; Li,
Sureshkumar & Khomami 2006) as well as in the study of viscoelastic CS (Kumar
& Graham 2000, 2001; Stone, Waleffe & Graham 2002). On the basis of this model,
the polymer stress τ can be related to the stress conformation tensor C, which
characterizes the ensemble-averaged second moment (< Q Q>) of the polymer chain
end-to-end distance vector ( Q) via the relationship

τ =
f (C)C − I

We
. (2.2)

The function f (C), known as the Peterlin function, is defined as

f (C) =
L2 − 3

L2 − trace(C)
, (2.3)

I is the unit tensor and the Weissenberg number We ≡ λR1Ω1/d . When f (C) = 1, the
model reduces to the Oldroyd-B model. The evolution equation for the conformation
tensor C is given by the equation

∂C

∂t
= −u · ∇C + C · ∇u + (∇u)T · C − f (C)C − I

We
+ κ∇2C, (2.4)

where one should note that an artificial (numerical) stress diffusive term, κ∇2C, has
been added in order to stabilize the numerical integration of the C evolution equation.
κ is the scalar stress diffusivity whose value must be chosen as low as possible so
that the numerical Schmidt number Scκ ≡ (κRe)−1 � 1, while ensuring that the flow
dynamics are not appreciably affected (Thomas et al. 2006a).

No-slip boundary conditions are applied for the velocity variables at the two
cylinder walls. Specifically, the boundary conditions for {ur , uθ , uz} are {0, 1, 0} and
{0, 0, 0} at r = r1 and r = r2, respectively. In both the z and θ directions, all the
variables (velocity, pressure and conformation tensor) are periodic with periodicity Lz

and 2π, respectively. Note that the constitutive equation with diffusion term (2.4) is
only applied to the bulk flow region, while the original constitutive equation without
the diffusive term is applied at the walls. Thus, no boundary conditions are externally
imposed at the walls for the components of conformation tensor C. Instead, the
values of C components are first evaluated at the walls by integrating (2.4) without
the diffusive term, and then these values are used as boundary conditions to integrate
(2.4) with diffusion in the bulk flow region. This is clearly elucidated in the numerical
algorithm (see Appendix).
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Figure 1. Computational grid for r × z × θ mesh sizes equal to 33 × 64 × 32. (a) r–z
cross-sectional plane. (b) θ–z cross-sectional plane. (c) Top view in the r–θ plane (note
that the section corresponding to θ = 2π is not plotted as it is the same as θ = 0).

3. Results and discussion
The selection of simulation parameters is motivated by experiments described in

§ 1. The maximum mean square chain extension L2 in the FENE-P model is chosen to
be a very large value of 104 in all the simulations for which the solution is practically
non-shear-thinning. Results are presented for R1/R2 = 0.8 and β = 0.8. Extensive
mesh and time-step refinement studies have been performed as reported previously
(Thomas et al. 2006a). On the basis of this, simulations are performed using a mesh
with 33, 64 and 32 grid points in the r, z and θ directions respectively when α = 1
(corresponding dimensional axial height is 2π × gap width d). For a few simulations
with α = 2, the mesh (r × z × θ) size used is 33 × 32 × 32. A typical computational
mesh grid corresponding to size 33 × 64 × 32 is shown in figure 1. The time step �t

in all the simulations is kept fixed at 0.05. These values were found to be sufficient
for mesh convergence as reported in earlier studies (Thomas et al. 2006a). We have
employed a time-adaptive scheme to select the value of the artificial diffusivity κ at
each time step, subject to the condition that the trace of C remains positive at all
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Figure 2. Reynolds number (Re) versus elasticity number (E) from linear stability analysis
of viscoelastic Taylor–Couette flow using Oldroyd-B model for R1/R2 = 0.8, β = 0.8, (�)
ξ = 0, (©) ξ = 1, (�) ξ = 2. The vertical dashed line corresponds to E = 1/3 at which
the time-dependent simulations are performed. The critical Reynolds number for the onset of
TVF of a Newtonian fluid corresponds to the point at E = 0, denoted by Re0 which is equal
to 94.73.

spatial grid points. κ typically ranged from values 0.0002 to 0.001 (Scκ > 11) and the
most common value utilized was 0.0005. Since the nonlinear dynamical simulations
are extremely CPU-intensive, the We–E parameter space has to be selected judiciously
such that flow transitions observed experimentally can be explored in detail. In this
study, flow transitions are explored at E = 1/3, 1/2, 3/4, 1 and 30. At E = 1/3,
simulations are performed in increasing order of We values (13, 20, 25, 27, 30) and
then in decreasing order of We values (28, 26, 23, 20, 18, 16, 15, 14, 13, 12, 11.5, 11,
10.5, 10, 9.5, 9). Simulations at E = 1/2 and 3/4 are performed for We = 25 and 30,
respectively. Finally, simulations are performed for We = 30, 25, 20, 15, 14 and 12 at
E = 1, and for We = 30, 25, 20 and 15 at E = 30.

3.1. Pattern formation at low elasticity values

In this section, results obtained for a constant value of elasticity number E ≡
We/Re = 1/3 are presented. The simulation protocol is as follows. We perform
time-dependent simulations starting near the neutral stability diagram at E = 1/3
represented by a dashed vertical line in figure 2. At this E value, linear stability
theory predicts the most unstable mode to be a non-axisymmetric oscillatory mode
with time period of 224.4 d/R1Ω1 (=19.62λ) and azimuthal wavenumber ξ = 1. The
critical values of We, Re and α predicted by linear stability theory are 11.44, 34.32
and 4.4, respectively. First, time-dependent simulations are performed for We = 13
(Re/Re0 = 0.412) using the initial condition constructed by the superposition of the
CCF with suitably weighted eigenfunctions obtained from linear stability analysis. In
small steps, we increment We (note that Re changes accordingly) to a value of 30 and
subsequently decrease it from 30 to the linear stability threshold by keeping E fixed
at 1/3, in order to identify the flow pattern selection. Going upward or downward in
Weissenberg number at fixed elasticity number is equivalent to increasing or decreasing
the shear rate (or Ω1 in experiments), since E is independent of γ̇ ≡ R1Ω1/d . For
each We value, the simulations are performed for a sufficiently long time (typically of
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O(100 λ)) and the final solution is used as initial condition to the simulation at the
next We value.

In experiments (Baumert & Muller 1995, 1997; Groisman & Steinberg 1997,
1998a,b), flow patterns were mostly visualized by capturing the intensity of light-
reflecting flakes, which were added in small amounts into the working fluid. By
plotting the darkness profiles of these flow patterns along a fixed axial (z) line in
consecutive moments of time, space–time diagrams of the flow patterns were obtained
from the experiments. In the present work, we display the flow patterns obtained
from dynamical simulations as space–time plots of the radial velocity sampled at time
intervals of 5λ/We (≡5d/(R1Ω1)) units along an axial line passing through the centre
of the computational domain, i.e. at r = (r1 + r2)/2 and θ = π. In grey scale, the
dark and light regions correspond to radial inflow and outflow regions, respectively.
Note that in all of the space–time figures the axial height is represented as 2πd . In
simulations for which the We was increased from 13 to 30, the dimensional axial
height was kept at πd, but the corresponding space–time plots are actually presented
with double the height for the sake of consistency in the figures. Doubling of the axial
height from πd to 2πd , however, did not alter the sequence of flow transitions which
will be shown later. For the remaining simulation cases, the dimensional height was
kept at 2πd .

As the Weissenberg number is increased from 13 to 30, a sequence of flow transitions
from the ribbon (or RSW) patterns to modulated ribbons and finally to OSs occurs.
This can be clearly seen from the space–time plots in figure 3. The ribbon patterns
in figures 3(a) and 3(b) are distinguishable from their checkerboard-like features that
signify alternative regions of radial inflow (dark) and outflow (light) similar to the
ones observed in experiments (Groisman & Steinberg 1996; Steinberg & Groisman
1998). The time periods associated with the fluctuating radial velocity in the ribbons
were found to be much greater than the fluid relaxation time and were approximately
43λ and 63λ for We = 13 and We = 20, respectively. The secondary flow appears
as a standing wave which azimuthally rotates with a wavenumber ξ = 1. It is to be
noted that in an ideal RSW, a pair of counter-rotating vortices of equal sizes generates
radial inflow and outflow when viewed at the r–z cross-section (Thomas et al. 2006a,b).
However, a distinct asymmetry between the radial inflow and outflow is visible in
the ribbon-like patterns at both We values of 13 and 20 (Thomas et al. 2006b). This
radial asymmetry is reinforced further as We is increased to 25 and 27 where the
flow patterns appear as modulated ribbons (see figures 3c and 3d ). For We = 30,
regions of strong inflow become further accentuated in the radial and azimuthal
directions, and the flow manifests as axisymmetric strips of oscillating inflow regions
or OSs as shown in figure 3(e). The maximum value of Vr (Vr ≡ We × ur ) in the
inflow is of O(1) and occurs always at a radial position that is closer to the outer
wall. Viewing the r–z cross-section of the flow reveals CS with strong inward flows
between a pair of vortices (Thomas et al. 2006b), which closely resemble the stationary
localized structures of the DW type seen in experiments (Groisman & Steinberg 1996,
1997, 1998a,b). Moreover, the strong inflow regions are always associated with large
polymer extensions signified by large values of trace(C).

The ribbons and modulated ribbons are non-axisymmetric states, whereas the OSs
are axisymmetric. In order to demonstrate the transition from non-axisymmetric to
axisymmetric flow states, we obtain space–time plots along the azimuthal (θ) direction
(at r = (r1 + r2)/2 and z = π). The evolution of the axisymmetric OS at We = 30
from the modulated ribbon at We = 27 is clearly visible from the azimuthal space–
time diagram of figure 4(a). Simulations with double the axial height (2πd) also
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Figure 3. Space–time plots of radial velocity ur along axial line positioned at r = (r1 + r2)/2
and θ = π, showing flow transitions when We is increased at E = 1/3. (a) We = 13 (RSW), (b)
We = 20 (RSW), (c) We = 25 (modulated RSW), (d ) We = 27 (modulated RSW), (e) We = 30
(axisymmetric OSs). Time and axial axes are expressed in λ and d units, respectively.

reproduced the same OS solution at We = 30 (see figure 4b), thus indicating the axial
wavenumber independence of these predictions. The inflow radial velocity ur in the
OSs was found to oscillate at a frequency equal to 1/(5.63λ) within an axial distance
equal to 0.907d, as shown in the enlarged part of figure 4(b).

While the shear rate was increased in experiments using dilute polyacrylamide
solutions (Groisman & Steinberg 1998b) for β = 0.55 and R1/R2 = 0.829, the flow
always underwent transition directly from CCF to DOs for all values of E > 0.2.
No RSWs appeared; instead, another novel oscillatory state, referred to as neutral
linear oscillations (NLOs), was observed as a transient intermediate state between
CCF and DO. NLOs were interpreted as unstable ribbons. Transitions to RSWs
from CCF occurred for 0.07 < E < 0.5 in the case of dilute polyethylene oxide
solutions where β < 0.16 and R1/R2 = 0.883 (Crumeyrolle et al. 2002). When the
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of the ur oscillations during the final 32 relaxation times of the simulation is also shown in
part (b).

shear rate was gradually reduced, transitions to OSs followed by the stationary,
axisymmetric and solitary CS (termed as ‘diwhirls’) (Groisman & Steinberg 1997,
1998a,b; Steinberg & Groisman 1998) occurred before the original Couette flow was
recovered. We note that Steinberg & Groisman (1998) did not specify whether the
OSs were non-axisymmetric or axisymmetric. The sequence of transitions was also not
affected qualitatively by the gap ratio or solvent to total viscosity ratio. R1/R2 = 0.707
(Groisman & Steinberg 1996) and 0.829 (Steinberg & Groisman 1998) and β = 0.926
(Groisman & Steinberg 1996) and 0.55 (Steinberg & Groisman 1998) yielded similar
results. The fact that neither OSs nor DWs were observed with increasing shear rate
indicates that these transitions are flow-history-dependent and require disturbances
of finite amplitudes to be stable. Nevertheless, one common feature exhibited by the
DO, OS and DW observed in experiments was the strong radial asymmetry between
inflow and outflow. This feature is also inherently present in all the flow patterns
obtained from the present FENE-P simulations.

Except for the oscillatory behaviour of the axisymmetric OS at We = 30, the
spatial flow structure of inflow region is very similar to that of the stationary DW
inflow core. Since it is not a priori known how long the simulations should be
performed to capture a certain transition, no guarantee exists that the OS solution
is indeed the asymptotically stable solution. In order to ascertain the stability of OS
to perturbations, small non-axisymmetric random disturbances were superimposed
on the axisymmetric OS velocity field, and time integration was performed to track
the evolution of the perturbed flow. It was found that small random perturbations
render the axisymmetric OS solutions unstable to disordered non-axisymmetric OS
after a time lapse of 39.77λ, as shown in figure 5(a). As seen in the enlarged part
of figure 5(a), oscillating inflow vortices appear as merging and diverging strips
as they are convected azimuthally and axially, and the disordered OS-like patterns
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Figure 5. Space–time plots of radial velocity ur showing transition to non-axisymmetric OSs
at We = 30. (a) Along axial line at r = (r1 + r2)/2 and θ = π, (b) along azimuthal line at
r = (r1 + r2)/2 and z = π. Time and axial axes are expressed in λ and d units, respectively, (c)
log–log plot of PSD of ur and uz versus dimensionless frequency f at r = (r1 + r2)/2, z = π
and θ = π for We = 30. The frequency is non-dimensionalized by (R1Ω1)/d.

are now non-axisymmetric as evidenced by the azimuthal space–time plot shown
in figure 5(b). The OSs appear axially spaced at 3.31d apart before the merging
takes place and oscillations continue with a typical frequency of 1/(5.63λ) (≡0.006
R1Ω1/d). Power spectral density (PSD) of both radial and axial velocity fluctuations
at the centre of the computational domain plotted in figure 5(c) are very similar
to each other, and a broad spectra revealing two power-law decay regions with
exponents −2.4 at low frequencies and −5.54 at high frequencies can be identified.
These features are representative of the spectra obtained at other points in the flow,
and hence the randomly fluctuating fluid motion is excited by a wide spectrum of
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and θ = π, showing flames at E = 1/3 and We = 23. Time and axial axes are expressed in λ
and d units, respectively. (b) Magnitude of drag force per unit axial length at the inner cylinder
(r = r1) versus time for We = 23 corresponding to flame pattern in figure 6(a).

temporal frequencies whose low-frequency regions are influenced by the merging and
generation of the oscillating CS that bear structural similarities with DWs reported
in experiments (Groisman & Steinberg 1997).

The formation and merging characteristics of oscillating inflow regions are
reminiscent of the ‘flame patterns’ reported in the experiments of Baumert &
Muller (1997, 1999) where the working fluid was a thermally sensitive highly elastic
polyisobutylene/polybutene solution. Experiments by Baumert & Muller (1999) with
only the inner cylinder rotating, and gap ratio R1/R2 = 0.912 and β = 0.87, showed
that flame patterns emerge when We = 9.59 and Re = 58.3 (E = 0.164). In another
set of experiments (Baumert & Muller 1997) with a wider gap ratio R1/R2 = 0.827,
flame patterns were reported for We = 13.7 and Re = 0.917 (E = 14.18). The
present (isothermal) simulations indicate that the merging/diverging events become
progressively more regular and periodic when the Weissenberg number is decreased
from 30 to values of 28, 26 and 23. Specifically, in the case when We = 23 (see
figure 6a), the periodicity in the merging, formation and diverging cycles is clearly
visible. Further, as shown in figure 6(b), the drag force on the inner cylinder drops
abruptly as the vortices merge.

A typical merging event of the strong inflow regions along the axial length of the
cylinder for the flame pattern at We = 23 is portrayed in figure 7, where the radial
velocity contours are plotted in the r–z cross-section sampled at time intervals of
10 λ/We units, or equivalently 10 d/R1Ω1 units. The merging process is strikingly
very similar to the coalescence of two solitary localized CS of the stationary DWs
observed in the experiments (see figure 6 of Groisman & Steinberg 1997). In the
non-axisymmetric OSs (or flame patterns), the maximum radial velocity in the inflow
is about 2.74 times that in the outflow and the I/O asymmetry exists for all these
cases. The corresponding polymer extensions are also large at the inflow regions.
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Figure 7. Snapshots of r–z cross-section corresponding to We = 23 of figure 6(a) during
coalescence of two strong inflow regions (represented by radial velocity contour densities).
Snapshots are sampled at time intervals of 10 d/R1Ω1 units at an azimuthal point θ = π. For
each r–z plot, 0 � z � 2π and r1 � r � r2.

Decreasing We from 23 to 20 resulted in an abrupt transition to a disordered flow
as revealed by the space–time plot in figure 8(a), where irregular patterns appear
similar to those of the experimentally observed (Groisman & Steinberg 1996) DOs at
low elasticity numbers. Spiral- and ribbon-like patterns are also seen occasionally in
this flow regime. At We = 18, the DOs ceased to exist and an intermediate transition
to a state with a strong inflow vortex pair is seen travelling down the cylinder column
(see figure 8b). At We = 16, the flow changes into an axisymmetric oscillating and
solitary structure characterized by regions of strong inflow (figure 8c). Space–time
plots in azimuthal direction shown in figures 8(d ) and 8(e) reveal that the DOs and
the OSs are non-axisymmetric and axisymmetric, respectively.

The temporal characteristics of the DOs of figure 8(a) are investigated by plotting
the frequency spectra of the radial and axial velocity fluctuations at the centre of
the computational domain (see figure 9). It can be seen that the fluid motion is
excited at a large number of frequencies spanning over a decade, along with a distinct
peak at approximately 3.388/λ which may have resulted from nonlinear interactions
between the inertial and elastic modes. Specifically, the spectrum follows a power-law
decay behaviour with an exponent of −3.02, reminiscent of the Batchelor flow regime
(Batchelor 1959; Kraichnan 1974) in which passive mixing of an advected scalar is
primarily accomplished by large eddies and the (random) flow is homogeneous at
small scales. In the absence of inertia, Groisman & Steinberg (2000) have obtained
a velocity spectrum exponent of −3.3 for chaotic flows of dilute polymer solutions.
Small broad peaks (see figure 9) also appear at the beginning of the low-frequency
decay regions, which could be influenced by coherent structures of the DW type.
However, unlike in the disordered non-axisymmetric OSs or flame patterns obtained
at We = 30, which showed two distinct power-law decay regions, only a single power-
law region is observed for the DOs at We = 20. This may be attributed to the
dynamics of significant merging, i.e. the appearance and disappearance of CS which
were distinctively absent for the DOs at We = 20. Therefore, one may infer that the
double decay regions of the power-law type of the temporal spectra are associated
with the merging and coalescing dynamics of CS that control the fluctuating velocity
field in low-frequency regions. However, the spatio-temporal characteristics of the
disordered flows, such as the DOs realized at We = 20 (Re = 60), are influenced
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Figure 8. Space–time plots of radial velocity ur . (a) We = 20 along axial line (DOs), (b)
We = 18 along axial line (transition to OSs), (c) We = 16 along axial line (OSs), (d ) We = 20
along azimuthal line, (e) We = 16 along azimuthal line. Axial space–time plots are taken at
r = (r1 + r2)/2 and θ = π. Azimuthal space–time plots are taken at at r = (r1 + r2)/2 and
z = π.

by the presence of CS which are also associated with large polymer extensions
in the inflow regions. These temporal features along with the spatially disordered
flow patterns indicate that the flow possesses irregularities in both time and space,
signifying turbulent characteristics. Since the solution elasticity is low at E = 1/3,
there is significant amount of inertia in the above discussed flows, and therefore it
is difficult to identify the polymer elastic effects in isolation from inertial influence.
Nevertheless, the ratio Re/Re0 is less than unity, which is well within the laminar flow
regime for a Newtonian fluid. Hence, the DOs and flame patterns originate largely
due to the polymer elastic stresses.
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Figure 10. Space–time plots of radial velocity ur along axial line positioned at r = (r1 + r2)/2
and θ = π, showing flow transitions when We is decreased at E = 1/3. (a) We = 15
(axisymmetric OSs), (b) We = 14 (axisymmetric OSs), (c) We = 13 (DWs). Time and axial
axes are expressed in λ and d units, respectively. The dashed box is used to demarcate the
figure boundaries due to lack of colour contrast on the white background.

Further simulations were performed below We = 16 to values of 15, 14 and 13
where transitions to stationary ring-like (axisymmetric) solitary localized vortex pairs
or DWs emerge, as indicated by the space–time plots in figures 10(a), 10(b) and 10(c),
respectively. As seen from the axial space–time plots in figure 10, the radial velocity
fluctuations continued to persist at We = 15 and 14, but decayed to zero resulting in
a stationary pattern at We = 13, which we identify as the stationary and axisymmetric
DWs reported in experiments (Groisman & Steinberg 1997). The localized structure
is axisymmetric, and therefore appears like a ring around the cylinder. The DW
structure (Groisman & Steinberg 1997; Kumar & Graham 2000, 2001; Thomas et al.
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Figure 11. (a) Radial velocity (Vr ) versus axial position (z) at radial position 0.549 gap-widths
away from the inner cylinder where inflow velocity is the maximum (We = 13, Re = 39). Note
that the z-axis is shifted upwards, so that the zero coordinate lies at the axial position where
Vr is maximally negative. (b) Axial velocity (uz) versus axial position (z) at radial point 0.1465
gap-widths close to the inner cylinder where axial velocity has the highest value (We = 13,
Re = 39). Note that the z-axis is shifted upwards, so that the zero coordinate lies at the
axial position where Vr is maximally negative. The tail ends of uz at the DW edges follow an
exponential fit, as indicated by the thick black lines.

2006b) is characterized by a strong inward flow with large polymer extensions in
the middle of two vortices which together are shaped like a spindle, and the major
portion of the flow outside of the DW resembles Couette flow.

For the stationary pattern at We = 13, the magnitude of the maximum inflow
velocity is −0.652d/λ (ur = −0.05) compared to −0.5d/λ from LDV measurements
(Groisman & Steinberg 1997), and this is nearly seven times the maximum outflow
velocity (ur = 0.007 or Vr = 0.091) as shown in figure 11(a). The axial span of the
intense flow is approximately 0.62d, while the slower outflow extends to nearly 2.75d
on either side of the inflow core. Corresponding inflow and outflow widths reported in
experiments (Groisman & Steinberg 1997) were 0.5d and 2.5d, respectively, which are
in close agreement with the above predictions that are obtained using a computational
domain with axial height of 2πd(≈6.823d). It can also be observed that only one DW
structure is present along the length of the cylinder column. Experiments (Groisman
& Steinberg 1997) show that when any two DWs approach each other within an axial
range of 5d, they tend to coalesce to form a single DW. Hence, it appears that an axial
height of 10d or greater is required in the simulations to capture more than one DW.
The computational overhead required for such simulations are prohibitively large even
on parallel computers. In figure 11(b), the variation of the axial velocity uz is plotted
as a function of axial position. The exponential decay behaviour of the velocity profile
near the DW edges, where the inflow splits into axially downward and upward flows,
was similarly observed in LDV measurements (Groisman & Steinberg 1997).

In accordance with experimental observations by Groisman & Steinberg (1997),
the stationary DWs dissipate and transition to unidirectional Couette flow below
We = 10 which is lower than the linear stability threshold value of 11.44. This can be
visualized from the axial space–time plots in figure 12 when the Weissenberg number
was decreased from 13 to 12, and subsequently down to 9 in steps of 0.5. As shown
in figure 12(a) for We = 11.5, the DW vortex pair gradually began to deteriorate
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Figure 12. Space–time plots of radial velocity ur along axial line positioned at r = (r1 + r2)/2
and θ = π, showing flow transitions when We is decreased at E = 1/3. (a) We = 11.5, (b)
We = 10.5. Time and axial axes are expressed in λ and d units, respectively.

by losing its ring structure. At We = 10.5 (see figure 12b), the localized structures
disappear, but residual and weak disturbances persist in the column at We = 10,
9.5 and 9. The CCF was recovered at We = 8, which is below the linear stability
threshold, suggesting that DWs exist as subcritical solutions.

There is a loss of asymmetry between the radial inflow and outflow during the
deteriorating phase of the DW vortex pair. This is attributed to the fact that the
radial velocities are no longer large enough (� d/λ) to sustain the phase lag between
the restoring radial normal force and the radial velocity gradient along the radial gap.
As a result, the asymmetry is no longer supported and the rates of polymer extension
decrease due to which polymer molecules begin to respond instantaneously to local
flow variations when We is decreased.

In order to investigate the effect of these flow patterns on the drag experienced at
the inner cylinder, we plot, in figure 13, the time-averaged total drag force normalized
with respect to the laminar value at the inner cylinder versus Weissenberg number. As
seen from the figure, the total drag increases up to a factor of ≈2.7 times the laminar
drag, while We is increased from 13 to 30. Further, the drag ratio is smaller for the
flame patterns (or non-axisymmetric OSs) compared to that for the axisymmetric OS
patterns at We = 30. This can be attributed to the merging behaviour exhibited by
the coherent oscillating radial inflow regions that tends to decrease the magnitude of
the drag force at the inner cylinder (see figure 6b). As the We is decreased below 30,
the ratio also decreases and eventually approaches unity.

It is instructive to examine the variation of the velocity, and polymer extension and
body force distributions in the inflow regions. As shown in figure 14, the radial inflow
velocity ur attains maximum values at positions closer to the outer stationary wall
which is in agreement with experimental inferences (Groisman & Steinberg 1997).
Further, note that the azimuthal velocity uθ exhibits a parabolic profile near the outer
wall at the inflow, as shown in figure 15(a). The profiles in figure 15 are presented
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only for the axisymmetric OSs and stationary DWs at We = 30 and 13, respectively.
However, the trends are generally typical of those in the other flow patterns such as
DOs and flames. The polymer chain extension, trace(C), is the largest in the inflow and
is higher near the rotating inner wall as shown in figure 15(a). The radial component
of the polymer body force, Fr ≡ [(1−β)/Re (∇ · τ )]r , shown in figure 15(b), can be seen
to be negative throughout the gap and attains its maximum absolute value near the
outer cylinder. This body force, which is generated due to the flow-induced stretching
of the polymers, in turn sustains the inward flow. Also plotted in figure 15(b) is the
azimuthal component of the polymer body force, Fθ ≡ [(1 − β)/Re (∇ · τ )]θ , which
is positive and negative near the outer and inner walls, respectively. This invariably
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Figure 15. Radial (r) gap profiles at an azimuthal point where the radial inflow velocity
is maximum for axisymmetric OS (We = 30) and stationary DW (We = 13, E = 1/3). (a)
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stress contribution Fr1 (dashed line) and radial stress gradient contribution Fr2 (dashed-dot
line) to total polymer body force Fr (solid line) for OS (�) and DW (�) versus r.

maintains the increase and decrease of uθ near the outer and inner walls, respectively.
The inward radial velocity (O(d/λ)) in the inflow regions is reinforced by the inwardly
acting polymer body force Fr , which does positive work on the inflow as more
energy from the mean flow is pumped into the core. This is consistent with the radial
reinforcement mechanism of Groisman & Steinberg (1998b) and the self-sustaining
mechanism proposed by Kumar & Graham (2000, 2001) for the stationary DWs
in the purely elastic case. As already known, the first normal stress difference,
N1 = τθθ − τrr , that appears in the radial body force term (∇ · τ )r plays a major role
in causing the primary elastic instability subject to infinitesimally small disturbances
(Larson et al. 1990). However, we note that in finite-amplitude flow transitions, such
as DOs, OSs and DWs shown in the present study, an additional contribution to Fr

arises from the gradient of the polymer chain extension ∂τrr/∂r . This is understood
from figure 15(c) where Fr, Fr1 ≡ −(1 − β)/Re N1/r and Fr2 ≡ −(1 − β)/Re ∂τrr/∂r

are plotted as functions of gap radius r. Specifically, the major contribution to Fr near
the outer wall comes from the Fr2 term, while the term Fr1 dominates a wider region
of the gap away from the outer cylinder. Since τrr is small but finite, its gradients
are higher at the inflow near the outer cylinder. Thus, coherent solitary structures of
the DW type are characterized by a strong tangential and radial inward flow which
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Figure 17. Space–time plots of radial velocity ur along axial line at r = (r1 + r2)/2 and θ = π,
showing flow transitions when We is decreased at E = 30. (a) We = 30 (OSs), (b) We = 20
(OSs), (c) We = 15 (DWs). Time and axial axes are expressed in λ and d units, respectively.
The dashed box is used to demarcate the figure boundaries due to lack of colour contrast on
the white background.

is determined by the azimuthal and radial components of the polymer body force
respectively.

3.2. Pattern formation at O(1) E

In this section, we explore the pattern selection at O(1) values of elasticity number
E for β = 0.8. The main objective is to investigate whether robustness in pattern
selection observed experimentally for larger E values could be reproduced and the
solitary vortex solutions are possibly omnipresent CS in highly elastic flows. Using
the solution for the DOs obtained from the case at We = 20 and Re = 60 (E = 1/3),
we explore the pattern selection at higher values of elasticity numbers up to E = 1 by
sequentially changing (We, Re) points from (20,60) to (25,50), (30,40) and (30,30). The
DOs disappear at the point (30,30) to give way to OSs as shown by the space–time
plots in figures 16(a), 16(b) and 16(c). By keeping E fixed at 1 and reducing the
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Figure 18. Radial (r) gap profiles at an azimuthal point where the radial inflow velocity
is the maximum for stationary DW (We = 15, E = 30). (a) Azimuthal velocity uθ (solid
line) and polymer extension trace (C) (dashed-dot line) versus r. Dashed line corresponds to
steady-state azimuthal velocity. (b) Polymer body force – radial component Fr (solid line) and
azimuthal component Fθ (solid line), normal stress contribution Fr 1 (dashed line) and radial
stress gradient contribution Fr 2 (dashed-dot line) to total polymer body force Fr versus r.

Weissenberg number, we show that the OSs continue to exist for We = 25 and 20, as
shown by the space–time plots in figures 16(d ) and 16(e), respectively. The time period
of oscillations at the strongest inflow regions are approximately 5.04λ, 6.19λ and 7.5λ
at We = 30, 25 and 20, respectively. These OSs are found to be axisymmetric, and
velocity values along azimuthal direction showed variations only in the third decimal
place. When the Weissenberg number was reduced from 20 to 15 and 14, stationary
and axisymmetric DWs emerged, as shown in figures 16(f ) and 16(g), respectively. At
We = 12, the DWs begin to deteriorate (see figure 16h) and the basic Couette flow
is recovered eventually below We ≈ 11. Linear stability analysis predicts the critical
values for Re, We, α and ξ as 12.46, 12.46, 4.74 and 1, respectively. Thus, DWs appear
to be subcritical as previously observed for E = 1/3. Hence, solitary vortex solutions
such as OSs and DWs appear to be the most commonly selected patterns at E = 1
as well.

3.3. Solitary vortex solutions for E � 1

The DOs ceased to exist when the Reynolds number was reduced and the Weissenberg
number was increased beyond E = 1. For instance, starting from a flow with random
structure, the flow evolves into solitary vortex flow (OS) at We = 30 and Re = 1
(E = 30), as shown by the space–time plot of figure 17(a). At E = 30, the critical
values for We, ξ and α predicted by LSA are 12.95, 1 and 4.95, respectively. The
transition to OS solution was found to be very robust even when the simulations
were started using the disordered flow solution obtained at E = 1/3. When We is
decreased from 30 to 15 in steps of 5 while keeping E = 30, the OS solution changes
to the stationary vortex solution or DWs at We = 15, as shown in figures 17(a), 17(b)
and 17(c). These solitary CS and their features are identical to the ones observed at
lower values of E such as 1/3 and 1. The radial gap profiles (in the DW core at We
= 15) of the azimuthal velocity and polymer extension in figure 18(a) and of the
polymer body forces (Fr , Fr 1, Fr 2, Fθ ) in figure 18(b) are similar to those observed at
E = 1/3 (figure 15). These solitary vortex solutions were also stable to perturbations
of different amplitudes, signifying that the OS and DW solutions are the most stable
patterns selected at high elasticity numbers (E � 1).
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4. Conclusions
In this work, we have explored nonlinear pattern formation in viscoelastic

TCF using three-dimensional dynamical simulations. First, a series of systematic
simulations was performed for the elasticity number E = 1/3. Although inertial
effects cannot be neglected for E = 1/3, the ratio Re/Re0 is less than unity (0.333 �
Re/Re0 � 0.95) and the flow conditions are well within the laminar flow regime for a
Newtonian fluid. Slightly above the critical point predicted by linear stability analysis,
RSWs (ribbons) manifest. Modulation/perturbation of RSW, which is periodic in
space and time, leads to asymmetry in the inflow and outflow regions. The elastic
normal stresses (or inwardly acting polymer body force) that result from polymer
extension reinforce the inflow regions, leading to localized vortex solutions which
could have different spatio-temporal properties. The presence of localized CS (DW,
OS) with strong radial I/O asymmetry is a common feature exhibited by these flows
as was previously suggested by Groisman & Steinberg (1997, 1998b). When We
is increased from 13 to 30, the total drag force experienced by the inner cylinder
increases; however, when We is decreased from 30, the drag force profile exhibits
hysteresis.

Dynamical simulations were also performed at elasticity numbers higher than 1/3
to investigate the pattern selection for O(1) values of E, with particular emphasis on
ascertaining the existence of DOs, OSs and DWs. Specifically, it is found that the
DOs cease to exist for E � 1. Instead, solitary vortex solutions such as the OSs and
DWs dominate. For instance, at E = 30 and We = 30, the OSs are found to be the
most stable solution no matter what initial flow solution is used in the simulation.
Perturbation of the OS solution by superposing it with a solution that has a random
flow structure for varying amplitude disturbances did not destabilize the OS. As We
is decreased to 15, the OSs transition to stationary DWs. The robustness of OSs and
DWs is attributed to the fact that the inward radial velocity in the inflow regions
of the CS gets reinforced by the inward acting radial polymer body force, a result
that is consistent with the radial reinforcement mechanism of Groisman & Steinberg
(1998b) and the self-sustaining mechanism of Kumar & Graham (2000, 2001) for the
stationary DWs in the purely elastic flow. The range of We values and the elasticity
numbers investigated here are well within the range where DOs, OSs and DWs have
been experimentally observed.

Simulations were performed for We values less than 30 for E � 1, with the purpose
of investigating disordered states at lower Reynolds numbers in order to address the
phenomenon of elastic turbulence. However, the reason why DOs ceased to exist in
the simulations beyond E = 1 could be attributed to the low values of the solvent
to total viscosity ratio β used in the present work. Specifically, we have used β =
0.8 compared to 0.55 used in experiments (Steinberg & Groisman 1998). In order
for disordered states with turbulent characteristics to manifest, it is reasonable to
expect that nonlinear flow-microstructure interactions that lead to the creation of
progressively smaller scales should not be rapidly dissipated by viscous diffusion. For
the cases investigated here, there are two sources of nonlinearities as can be seen from
the governing flow equations – the inertial term, Re u · ∇u, and the polymer body force
term, (1 − β) ∇ · τ . These two terms should compete with the viscous diffusion term,
β ∇2u, in order to maintain the disordered state. As the Reynolds number is reduced,
effectively the nonlinear contribution from inertia decreases, and the nonlinear elastic
contribution has to compensate for the loss in the strength of nonlinearity that is
necessary to overcome the dissipative forces. For this to happen, either β should be
sufficiently low or We should be sufficiently large. Increasing We at a fixed β value
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or reducing β at a fixed We value can elevate the strength of the nonlinear coupling
between the polymeric stress and the flow velocity field. Simulations with β values
lower than 0.8 have experienced numerical instabilities due to loss of the positive-
definiteness of stress conformation tensor C. These simulations were performed using
33, 64 and 32 points in the radial, axial and azimuthal directions. In order to capture
steep stress gradients that develop in the radial direction, it is necessary to perform
simulations with finer mesh sizes, which is beyond the scope of the present study. For
the range of β and We numbers where computations are feasible, the exact nature
of the flow transition boundaries especially to disordered states in the We–E space is
unknown, and from the computational viewpoint it is a tedious and impractical task
to map out the parametric space. This warrants further experiments with properly
characterized liquids, especially focusing on the transition to disordered states at high
elasticity numbers. A combined theoretical and experimental effort in this direction
can greatly assist in addressing the issue of elastic turbulence.

Financial support from NSF grant CBET-0335348 is gratefully acknowledged.

Appendix: Fully implicit OSIMS algorithm
The fully implicit OSIMS algorithm (FI-OSIMS) algorithm is a modified version

of the operator splitting influence matrix spectral (OSIMS) algorithm (Thomas
et al. 2006a), wherein a fully implicit (FI) second-order time-integration scheme
is implemented with a double nested iterative procedure for the constitutive and
momentum equations. The salient features of this spectral (in space) multi-step (in
time) algorithm are explained below.

A.1. Spatial discretization

Spatial discretization is accomplished by using exponentially convergent spectral
basis functions: Chebyshev orthogonal polynomials in the bounded radial (r)
direction and Fourier basis functions in the axial (z) and azimuthal (θ) periodic
directions respectively. Therefore, any dependent variable, W ≡ W (t, r, z, θ) ≡
ur, uθ , uz, P, Crr , Crθ , Crz, Cθθ , Cθz or Czz is represented as

W (t, r, z, θ) =

Nr∑
l=0

Nz/2−1∑
j=−Nz/2

Nθ/2−1∑
k=−Nθ/2

ŵljk(t)Tl(r) ei(2πjz/Lz+kθ), (A 1)

where i is the imaginary unit (i ≡
√

−1), Lz is the length of the computational
domain along the cylinder axis, Tl(r) is the Chebyshev polynomial of degree l,
the complex exponentials represent the complex Fourier series for the axial and
azimuthal directions truncated at Nz/2 and Nθ/2, respectively, and ŵljk(t)s are the
spectral coefficients. The radial, axial and azimuthal modes of ŵljk(t) are identified
using the subscripts ‘l’, ‘j ’ and ‘k’, respectively. The above spectral expansions for
the flow variables are substituted in the nonlinear governing equations, and then a
Galerkin projection is implemented which leads to a system of ordinary differential
equations (in time t) for the 10Nθ × Nz × (Nr+1) spectral coefficients. Hence, FI and
iterative time-integration techniques such as Newton’s method are computationally
infeasible. Semi-implicit schemes are only conditionally stable and do not guarantee
numerical convergence. Hence, we employ an FI second-order accurate time-
integration (Adams–Moulton) scheme combined with two nested iterative procedures
while ensuring converged results at each time step. Specifically, in the inner iteration
loop (denoted by index ‘m’) the conformation tensor C is implicitly updated for a
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given velocity field. Using the converged solution of C from the inner iteration loop,
the velocity field is updated in the outer iteration loop (denoted by index ‘q ’). The
inner to outer iteration cycle is repeated until a particular convergence criterion is
satisfied for all the flow variables. The main steps of the time integration are discussed
below.

A.2. Time-integration of the FI-OSIMS algorithm

First, the conformation tensor is updated for a given velocity field based on second-
order Adams–Moulton technique as

Cn+1 =

{
Cn +

�t

2
(Fn+1 + Fn)

}
+

κ�t

2
∇2(Cn+1 + Cn), (A 2)

and �t is the time step size. The tensor F includes all the nonlinear terms of the
constitutive model in (2.4) and it is evaluated iteratively. For instance, at the ‘n + 1’
time step, ‘m’ internal iteration and ‘q ’ external iteration, it becomes

Fn+1
m,q = −un+1

q−1 · ∇Cn+1
m,q + Cn+1

m,q · ∇un+1
q−1 +

(
∇un+1

q−1

)T·Cn+1
m,q − τ n+1

m,q (A 3)

C is updated iteratively via two consecutive substeps. First, an intermediate value for
the conformation tensor, Cn+1/2

m,q , at time step ‘n + 1’ is calculated by only considering
the bracketed terms in (A 2). Then at the mth inner and qth outer iteration loops, the
F tensor is integrated using a predictor–corrector scheme as shown below:

Cn+1/2
m,q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cn +
�t

2

(
3Fn − Fn−1

)
, if m = q = 1

Cn +
�t

2

(
Fn+1

mc,q
+ Fn

)
, if m = 1, q � 2

Cn +
�t

2

(
Fn+1

m−1,q + Fn
)
, if m � 2, q � 2

, (A 4)

where mc denotes the internal iteration number of the last converged inner iteration
procedure (for q > 1; note for q = 1, m = mc = 1). The second substep is the
diffusion step where in the conformation tensor C is implicitly updated for the
numerical diffusivity term at the ‘n + 1’ time step, leading to

∇2(Cn+1
m,q + Cn) − 2

κ�t
(Cn+1

m,q + Cn) = − 2

κ�t
(Cn+1/2

m,q + Cn) (A 5)

The wall boundary conditions for (A 5) are given by the values of Cn+1/2
m,q , evaluated

from (A 4) at the intermediate step; that is,

Cn+1
m,q = Cn+1/2

m,q . (A 6)

For q = 1, the above two substeps ((A 4) and (A 5)) are performed only once. For
q � 2, the two substeps are iterated together. After each iteration and for m � 2, a
relative error, Cerr

ljk;m,q, is computed via the relationship

Cerr
ljk;m,q =

⎧⎪⎨
⎪⎩

∣∣∣∣
ˆC

n+1

ljk;m,q − ˆC
n+1

ljk;m−1,q

ˆC
n+1

ljk;m,q

∣∣∣∣ , if
∣∣∣Ĉn+1

ljk;m,q

∣∣∣ > 1∣∣∣Ĉn+1

ljk;m,q − Ĉ
n+1

ljk;m−1,q

∣∣∣ , if
∣∣∣Ĉn+1

ljk;m,q

∣∣∣ < 1

, q � 2, m � 2, ∀l, j, k. (A 7)

The above-described, internal iterative procedure continues until a convergence
criterion of the form

max(Cerr
ljk;m,q) < εm, m � 2, (A 8)
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is satisfied where the tolerance εm value is typically set to 1 × 10−4. The criterion
(A 8) is subject to the constraint that mc � mmax and mmax is the maximum number
of loops allowed within the inner iteration procedure. Typically, mmax = 10 in all the
simulations.

The converged C values, Cn+1
mc,q

, are then substituted in (2.2) and (2.3) to obtain the

polymeric stress, τ n+1
mc,q

, at ‘n + 1’th time step, after which the momentum equation
is solved, wherein the velocity is implicitly updated (Adams–Moulton) in the outer
iteration procedure denoted by the subscript ‘q ’. At every external iteration q , the
velocity is updated in three substeps to produce an intermediate solution (denoted
by *), which will be corrected later to ensure the satisfaction of the incompressibility
constraint. In the first substep, the inertial terms and the polymeric stress contributions
are updated implicitly via the Adams–Moulton technique (except for q = 1, the inertial
terms are computed explicitly using the Adams–Bashforth method as shown below,

un+1/3∗
q − un

=
(1 − β)�t

2Re
∇ ·

(
τ n+1

mc,q
+ τ n

)
+

⎧⎪⎨
⎪⎩

�t

2
(3un × ωn − un−1 × ωn−1), q = 1

�t

2
(un+1 × ωn+1 + un × ωn), q � 2

. (A 9)

In the second and third substeps, we account implicitly for the pressure (first-order
Euler method) and viscous contributions (second-order Adams–Moulton). This leads
to

un+2/3∗
q = un+1/3∗

q − �t∇P n+1∗
q , q � 1, (A 10)

and

un+1∗
q = un+2/3∗

q +
β�t

2Re
∇2(un+1∗

q + un), q � 1. (A 11)

Note that the pressure P n+1∗
q in (A 10) is still unknown. Therefore, before implementing

the second substep, a Poisson equation for the pressure is derived by taking the
divergence of (A 10) and enforcing that un+2/3∗

q is divergence-free, that is,

∇2P n+1∗
q =

∇ · un+1/3∗
q

�t
. (A 12)

Equation (A 12) is solved subject to homogeneous boundary conditions for the
pressure. Hence, the solution needs to be corrected for the true pressure boundary
conditions. Therefore, the influence matrix has to be evaluated and used along with
the intermediate solution to evaluate the true pressure boundary conditions. In order
to evaluate the influence matrix, the following Stokes problem is solved:

∇2pi = 0, pi(sj ) = δji, (A 13a)

β

Re
∇2ui − ∇pi =

ui

�t
, ui(sj ) = 0, (A 13b)

where i = 1, . . . , M and M is the total number of grid points on the cylinder wall (i.e.,
M = 2 × Nz × Nθ , see (A 1)). In the above equations, sj (j = 1, 2, . . . , M), represent
the grid points on the cylinder walls and δji is the Kronecker delta. By solving (A 13a)
and (A 13b), a total of M linearly independent solutions are constructed. The influence
matrix, denoted by H , is then evaluated from the divergence of the velocities, ui , at
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the cylinder walls as follows:

Hji = ∇ · ui(sj ). (A 14)

The solutions to (A 13a), (A 13b) and the influence matrix (A 14) are evaluated and
stored in a preprocessing stage. The corrected solution at the end of each (n+1) time
step within iteration q for P n+1

q and un+1
q can now be constructed by the following

linear superposition:

P n+1
q = P n+1∗

q +

N∑
i=1

γipi, (A 15a)

un+1
q = un+1∗

q +

N∑
i=1

γiui , (A 15b)

respectively, where the coefficients γi are chosen by solving the system of equations
given by

Hjiγi = −∇ · un+1∗
q (si). (A 16)

The external and internal iterative loops are executed at least twice in order to
calculate an error estimate

eq =

⎧⎪⎨
⎪⎩

∣∣∣∣∣
ŵ

n+1
ljk;q − ŵ

n+1
ljk;q−1

ŵ
n+1
ljk;q

∣∣∣∣∣ , if
∣∣ŵn+1

ljk;q

∣∣ > 1, q � 2,

∣∣ŵn+1
ljk;q − ŵ

n+1
ljk;q−1

∣∣, if
∣∣ŵn+1

ljk;q

∣∣ < 1, q � 2,

(A 17)

for all the spectral coefficients, ŵljk , of all dependent variables (ur, uθ , uz, Crr , Crθ ,

Crz, Cθθ , Cθz, Czz). If the outer convergence criterion

max(eq) < εq, q � 2, (A 18)

is met, then all the variables are updated to their converged values from the last
iteration (q = qc, m = mc), that is,

ŵ
n+1
ljk ≡ ŵ

n+1
ljk;mc,qc

. (A 19)

εq is typically set at 1 × 10−4 in the simulations and qc denotes the external iteration
number of the last converged outer iteration procedure. The criterion in (A 18) is
subject to the constraint that qc � qmax, and qmax is the maximum number of loops
allowed within the outer iteration procedure. Typically, qmax = 5 in the simulations
reported here. The preset upper limits for εm, εq, mmax and qmax were found to be
sufficient enough for obtaining converged solutions in all simulations.
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